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To extend the chemical relaxation technique to ternary oxide systems, theoretical analysis was made 
to obtain an expression for the chemical diffusion coefficient in terms of the vacancy diffusion coeffi- 
cient. An equation, b = [CoI(C, + C,)] &(&)(?I In P(Or)la In C,), was derived. This is similar to the one 
for the binary oxide system. Chemical relaxation experiments were made on the magnetite-hercynite 
solid solutions, (FeI~YAI,)S-s04 withy = 0.0,0.067,0.133, and 0.20, at temperatures between 1300 and 
1400°C. The vacancy diffusion coefficient decreased remarkably with an increase in y. The activation 
energy was found to be 20.8 * 3.7, 33.5 2 4.2, 50.4 * 3.6, and 66.3 * 4.5 kcahmole for y  = 0.0, 0.067, 
0.133, and 0.20, respectively. A strong dependence on y  was also found. The dependence of the 
vacancy diffusion coefficient on y  was interpreted to indicate that the jump frequency of cation 
vacancies is decreased by the introduction of aluminium ion. 

Introduction 

In most cases, metal deficit-type binary 
oxides have cation vacancies as major lat- 
tice defects and cation diffusion proceeds 
via vacancies. It is well known that the self- 
diffusion coefficient Di of cations of kind i is 
related to the vacancy diffusion coefficient 
D, by the equation (I) 

DiCi = D,C, (1) 

where Ci and C, denote the concentrations 
of cation i and vacancies, respectively. Di is 
related to the tracer diffusion coefficient Df 
by the equation 

Difo = DF, (2) 

where f0 is the correlation factor. The 
chemical relaxation technique has been uti- 
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lized for the measurement of the chemical 
diffusion coefficient b in nonstoichiometric 
binary oxides. When a stepwise change of 
oxygen partial pressure is given to the sys- 
tem, physical properties depending on non- 
stoichiometric composition vary with time 
and finally reach new equilibrium values. If 
the surface reaction rate is high enough, the 
chemical diffusion coefficient d can be cal- 
culated from the relaxation curve. 

For chemical diffusion in binary oxides, 
Wagner (2) has derived the equation 

6 = (z&c + IzAIDA) 

where subscripts A and C denote anions 
and cations, respectively. Cc and C, are 
concentrations of cations and vacancies, zc 
and zA are numbers of charge of both kinds 
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of ions, and p. is the chemical potential of 
the oxygen atom. 

If cation vacancy diffusion prevails in 
metal deficient binary oxides, Dc S DA ; 
therefore, 

d = Z&C& 1 d In P(Od -_ 
12,Jcv 2 a ln G 

zcDv 1 d In P(Oz) 
=mZ alnC, ’ (4) 

Equation (4) indicates that the vacancy dif- 
fusion coefficient is directly determined 
from the chemical diffusion coefficient. 

Chemical relaxation technique, applied 
to binary oxides such as Co0 (3, 4), NiO 
(3, 5), and Fe304 (6), has demonstrated its 
relevance to obtaining vacancy diffusion 
coefficients. Although some papers have 
been published on chemical diffusion in ter- 
nary oxides (7-9), detailed theoretical anal- 
ysis is needed. This paper aims to extend 
the chemical relaxation technique to ter- 
nary systems. For this purpose, the 
magnetite (Fe304)-hercynite (FeAl,O,) 
solid solution system was chosen, since the 
system has a wide nonstoichiometric range 
(l&13), and the chemical relaxation exper- 
iment was expected to be done by means of 
a thermobalance. 

Theoretical 

Phenomenological Theory of Chemical 
Relaxation in Ternary Oxide Systems 

From the results of nonstoichiometry and 
tracer diffusion experiments on magnetite 
and magnetite-hercynite solid solutions at 
high oxygen pressures, it is considered that 
chemical diffusion proceeds by the cation 
diffusion via cation vacancies and oxide 
ions do not move (IO-16). During the relax- 
ation process after stepwise change in oxy- 
gen partial pressure, iron ions (Fe2+ and 
Fe3+), A13+ ions, and electrons diffuse in 
the same direction, while cation vacancies 
ditkse in the opposite direction. 

Let us consider a slab equilibrated under 
an oxygen partial pressure, where the oxy- 
gen partial pressure is raised to a higher 
value at t = 0. If the surface reaction is fast 
enough, the surface has a nonstoichiome- 
tric composition in equilibrium with the 
new oxygen partial pressure. Cations mi- 
grate outwards to form a new oxide lattice. 
The cation diffusion flux JM is proportional 
to the concentration gradient dCM/dx, re- 
sulting in 

JMC -&, (5) 

where D is the chemical diffusion coeffi- 
cient. The weight change per unit area is 
proportional to cation flux (Jr,& at the sur- 
face: 

dW - dCM 
dt = g(JM)s = -gD x (6) 

where g denotes the weight of oxygen mol- 
ecules per one mole of cation. 

In magnetite-hercynite solid solutions, 
both iron ions and AP+ ions diffuse via cat- 
ion vacancies; thus, 

JM = J1 + 52 (7) 

(8) 

where subscripts 1 and 2 denote iron ions 
and AP+ ions, respectively. From Eqs. (5), 
(7), and (81, 

- dcv 
JM=J,+J2=Ddx* (9) 

Fluxes of iron ions, AP+ ions, and electrons 
are expressed as follows: 

J 
I 

= _ DICI &I + ZIW 
RT dx (10) 

J 2 
= _ D2C2 d(pz + z2F4) 

RT dx (11) 

J 3 = -!&h+z3F$). 
RT dx (12) 
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In Eqs. (lo), (ll), and (12), subscript 3 of magnetite-hercynite solid solutions, 
denotes electrons; pi and zi are the chemical D3C3 are much larger than &Cl or D2C2. 
potential and the number of charges on spe- We see that the second terms on the right- 
ties i; and 4 is the electrical potential. Un- hand side of Eqs. (16) and (17) are negligi- 
der equilibrium conditions, bly small, when compared to the first 

(13) 
terms. Accordingly, 

p2 + z2p3 = PB (14) 
JM = J, + J2 

NAd,UA + NBd/LB + Nodpo = 0 (15) 
= 

where subscripts A, B, and 0 denote iron, 
aluminium, and oxygen atoms, respec- 
tively. NA, Na , and No are mole fractions 
of iron, aluminum, and oxygen, respec- 
tively. 

Butting z3 = - 1 in Eq. (12) and utilizing 
Eqs. (13) and (14), Eqs. (10) and (11) are 
written 

In the relaxation experiment, the change 
in nonstoichiometry is generally very small. 
Also, it is assumed as a first approximation 
that the molar ratio of Fe to Al remains 
constant during the relaxation run. As is 
shown in the Appendix, the chemical po- 
tential gradients are expressed by the equa- 
tions 

J = _ &Cl &A I RTzlJx 
1 

4 RT dx D3C3 i 
d/-hi 

dx = - NA + NB ( 
No 

&Cl d/-h QGzIJ~ =---- 
RT dx D3C3 

(16) - 

J RTzzJ3 dCLB No 
2 

= _ D2C2 &E I 
-( RT dx D3C3 1 

-= - 
dx i NA + NB 

D2C2 dPB =---- 
RT dx 

NA‘-Y 

+ NA + NB 
i!s (20) 
dx 

Because of the high electronic conductivity Insertion of Eqs. (19) and (20) into JM yields 

JM = i 
VW, + D2C2Ko CIC~(DI - D2)c.u 

RT(CI + C,) + RT(C, + C,)(C, + C, + Co) 1 

Go 

dx 

= 

i 

@ICI + D2C2)Co + C,C2@1 - D2h 

RUCI + C2) RT(CI + C,)(C, + C2 + Co) 1 

RT 1 a In P(02) X, 
’ C, 5 8 In C, dx (21) 

where 

d In P(02) 

Q!= 
~(NA + NB)~ 

Comparison of Eq. (21) with Eq. (9) yields 

D = ( 
(&Cl + D2C2)Co 

c, + c, 

C,C2(D, - D2h 

+ (Cl + C,)(C, + c2 + co> 1 

1 ~3 In P(02) 
’ 2c, 13 In C, * (23) 
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If the second term in parenthesis in Eq. (23) ternary oxide systems. Rewriting Eq. (27) 
is much smaller than the first term, with the aid of Eq. (2) results in 

fi = (&Cl + D2C2Ko 

(Cl + C2)G 

' 

or 

D, = (x,D, + X2D2)IX” (30) 

C,D, = C,D, + C,D,. (31) 

When either C, or C2 approaches zero, Equation (31) is an extension of Eq. (1) to 

Eq. (24) coincides with Eq. (4). ternary oxides. Insertion of Eq. (31) into 
Eq. (24) yields 

Vacancy Diffusion Coefjcient in Ternary 

Manning (28) has derived an equation ex- 
pressing the correlation factor of interdiffu- 

Oxide System 

sion by the vacancy mechanism in a binary 
alloy system. According to Manning, 

DT = (Q)i2x,wif; (25) 

Q = t~Y2(~,~,fi + ~2w,f2%~ (26) 

-  

D = - C, + C, 2 

When C, or C2 approaches zero, the 

CO& A a ln p(O3. t32) 

a In C, 

right-hand side of Eq. (32) coincides with 
that of Eq. (4). Equation (32) gives a rele- 
vant relationship to be utilized in calculat- 
ing vacancy diffusion coefficients from 
measured chemical diffusion coefficients. 

= tx,DT + x2D2*Y.G, (27) 

where 1 is the jump distance, o1 and w2 are 
the vacancy-atom exchange rates for the 
two kinds of atoms,& is the correlation fac- 
tor of tracer diffusion. x1, x2, and x, are 
mole fractions of metals 1, 2, and vacancy, 
respectively. fi and f2 are the correlation 
factors of metals 1 and 2. Manning’s ex- 
pression for fi is 

fl= ~oh~lh + x242)lf 

201 + ~o(xlwfl + ~24-2wi 
(28) 

where MO is defined by 

x0 -. 
Ml = 1 -fo 

An equation similar to (28) holds for f2. Measurements 

Manning’s equation was originally de- Nonstoichiometry and chemical relaxa- 
rived for interdiffusion in binary alloys. tion were studied by means of a thermobal- 
Equations (25)-(28) were applied to inter- ante. Details are described elsewhere (6). 
diffusion in the NiO-Co0 system by Chen Nonstoichiometry was determined from the 
and Peterson (29) and by Dieckmann and equilibrium weight of the specimen. Chemi- 
Schmalzried (7). If oxide ions are actually cal relaxation was studied by following the 
immobile in the ternary oxide system, Eq: weight change after the abrupt change in 
(26) holds; hence, one can obtain an equa- the total pressure of an Ar-O2 gas mixture. 
tion for the vacancy diffusion coefficient in A preliminary experiment was conducted 

Experimental 

Materials 

Magnetite-hercynite solid solutions were 
prepared by the same method as reported 
previously in Ref. (13). Sintered specimens 
were used for the measurement of nonstoi- 
chiometry and single crystals were em- 
ployed for the measurement of the chemical 
diffusion coefficient. Single crystals, 5 mm 
in diameter and 100 mm in length, were 
grown by the floating zone method, utiliz- 
ing a xenon arc image furnace. Rectangular 
or cylindrical specimens, about 1 g in 
weight, were cut from the single crystals. 
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FIG. 1. Nonstoichiometry in FeS-s04. Present results: 0, 1300°C; A, 1350°C; 0, 1400°C. Recalcu- 
lated from the data of Nakamura et al. (6): 0, 1300°C; A, 1350°C; n , 1400°C. Dieckmann (20): @, 
1300°C; 0, 1400°C. 

40 )/ah 2 

FIG. 2. Nonstoichiometry in (Feo.933Alo.06,)s-s04. 0, 1300°C; A, 1350°C; 0, 1400°C. 
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FIG. 3. Nonstoichiometry in (Feo.s&l,,.,s~)3-a04. 0, 1300°C; A, 1350°C; Cl, 1400°C. 

I I I11111 I I I I11111 I I I111111 

10-3 10-z 10-l 
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FIG. 4. Nonstoichiometry in (Feo.8Alo.2)9-a04. 0, 1300°C; A, 1350°C; 0, 1400°C. 
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to establish corrections for buoyancy and 
thermomolecular force. 

Results 

Nonstoichiometry 

The metal-to-oxygen atomic ratio of 
magnetite and magnetite-hercynite solid 
solution changes from metal deficit to metal 
excess with decreasing oxygen pressures. 
An inflection point is expected at the stoi- 
chiometric composition, in the plot of 
weight vs log P(OJ (16, 20). In this study, 
measurements were made more carefully 
than previously (6, 23) and inflection points 
were observed for each isotherm curve at 
10-4.5 to lo-’ atm, depending on tempera- 
ture and the hercynite concentration. The 
stoichiometric composition was determined 
from the inflection point. Results for cation 
deficient composition ranges are summa- 
rized in Figs. 1 to 4. In our previous paper 
(6), nonstoichiometry was calculated, as- 
suming that magnetite in coexistence with 
wuestite has the stoichiometric composi- 
tion. Therefore, the previously reported 
data were recalculated, using the new stoi- 
chiometric points. They are also reported in 

Fig. 1. The nonstoichiometric data for 
magnetite, recently reported by Dieckmann 
(20), are also plotted in the same figure. All 
three data are in good agreement. The value 
of the nonstoichiometry parameter 6 for 
magnetite-hercynite solid solutions in- 
creased with decreasing temperature and 
increasing hercynite concentration. This 
dependence of 6 on temperature and hercy- 
nite concentration is similar to that re- 
ported elsewhere (23). 

Chemical Relaxation 

Figure 5 shows typical relaxation curves. 
Solving Eq. (6) for the three-dimensional 
case, one obtains 

W(f) - W(O) 
W(w) - W(O) 

I v [c,(r,t) - &]df 
= 

VGA - Gd * (33) 

Green’s theorem is utilized in the integra- 
tion; r is the vector indicating the position 
in the sample specimen; CL and C”, are the 
concentrations at t = 0 and ~0, respectively. 
C&,t) is the cation concentration at time t 
and position r. 

0.0 
0 5 10 15 20 

t/ min 

FIG. 5. Oxidation relaxation curves for (Fe0.933A&+,,)s-s04. 0, 13OO”C, from 6 = 0.010 to 0.018; D, 
135O”C, from 6 = 0.010 to 0.017; 0, 14OWC, from 6 = 0.010 to 0.017. 
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Solution of Eq. (33) for a rectangular 
specimen of dimensions 21, x 212 x 213 is 

we - W(O) _ ;; fi 2 
WPJ) - W(O) i=l a,=0 

eXp[-Bt((2ni + l)?r/21i}‘] 
(2FZi + 1)2 (34) 

and that for a cylindrical specimen of radius 
a and length 21 is 

W(t) - W(O) 
ww - W(O) 

_ 32 C exp[-yJL2: :)i)?ri21}2] 
+a2 n=O 

m exp( -d&J 
XC 2 * (35) 

m=O %I 

In Eq. (35) (Y, is the mth positive root of 

Joba,) = 0, 

where Jo is the Bessel function of zero or- 
der. 

To obtain accurate d value, the right- 

hand side of Eqs. (34) and (35) are com- 
puted as a function of tit. Using the table of 
[W(t) - W(O)]l[ W(a) - W(O)] vs dt, dt was 
determined from the observed weight 
change. dt was then plotted against t. If the 
relaxation process is diffusion-controlled, 
this plot should give a straight line. Figure 6 
shows the plot of dt vs t. The plots for 
oxidation and reduction runs are straight 
and give the same slope. It is concluded 
that the reaction is diffusion-controlled. 

A small dependence of d on oxygen pres- 
sure was also found, as in the case of 
magnetite (6). D, was calculated by using 
Eq. (32) with the aid of the nonstoichiome- 
tric data of Figs. 1-4. The oxygen pressure 
dependence was not found for calculated 
D, values within experimental error, as is 
illustrated in Table I. 

Table II summarizes D, values and Fig. 7 
shows Arrhenius plots for D, . D, decreases 
with the increase in hercynite content. Va- 
cancy diffusion coefficients of magnetite, 
reported in the previous paper (6), are also 

1.0 

0.5 

0.0 

t/min 

FIG. 6. dt vs t plots for (Fe+93XAl,,.067)s-s04 at 1350°C. 0, oxidation run; 0, reduction run. 
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TABLE I 

OBSERVEDCHEMICALDIFFUSION COEFFICIENTS ANDCALCULATED VACANCY DIFFUSION 
COEFFICIENTS FOR (Fe0.8A10.2)X-604 AT 1300°C 

PI PII” d d In 6 D” 
(lo-’ atm) (lo-’ atm) (10m6 cm2 set-I) 63 In P(02)) (10m6 cm* set-‘) 

2.71 1.11 1.255 0.634 1.193 
1.11 2.71 1.317 0.634 1.252 
5.84 2.34 1.993 0.543 1.622 
2.34 5.84 2.150 0.543 1.750 
5.84 2.34 1.539 0.543 1.252 
7.24 17.7 3.20 0.349 1.685 

17.7 7.24 2.591 0.349 1.356 

a P, and PII are the oxygen partial pressures before and after the change in the oxygen pressures, 
respectively. 

plotted in the same figure. Present results 
are about two times larger than the pre- 
vious ones. The discrepancy is attributed to 
the differences in the method of determin- 
ing fi and the sizes of the specimens. 

In the previous paper (6), fi is deter- 
mined from the slope of the plot of log[l - 
{W(f) - W(O)}/{W(a) - W(O)}] vs, t. Such a 
plot gives a linear relation only in the range 
of (W(t) - W(O)}/{W@) - W(0)) > 0.6. 
Moreover, the data in the range of {W(t) - 
W(O)}/{W(w) - W(O)} > 0.9 contain a large 
relative error. Therefore, the method em- 
ployed in the previous paper gives b value 
with considerable errors. The present 
method utilizes the whole data of {W(r) - 

TABLE II 

VACANCY DIFFUSION COEFFICIENTS IN 

(Fel-yAly)3-S04s 

D" 
(10m6 cm* see-I) 

Y 1300°C 1350°C 1400°C 

0.0 11.62 k 0.5 13.3 t 0.5 17.3 t 0.7 
0.0667 7.46 ‘: 0.03 11.0 ” 0.4 13.4 f  0.7 
0.133 3.26 iz 0.1 4.53 +- 0.2 8.2 k 0.2 
0.2 1.44 2 0.09 3.31 k 0.08 5.17 -c 0.1 

a Figures following + are the standard deviations of 
the mean. 

W(O)}/{W(CQ) - W(O)} -C 0.8. Therefore, 
more accurate fi values are obtained. In the 
previous work, a rectangular magnetite 
specimen of 2.52 x 3.95 x 10.61 mm was 
used. The sample used in the present exper- 
iment is in a cylindrical form, 5.35 mm in 
diameter and 15.08 mm in length. When the 
specimen is small, the edge effect seems 
remarkable. Moreover, when the weight 
change is large in the relaxation runs, errors 
in the measurements are small. Therefore, 
the present result should be more accurate 
than the previous ones. 

Discussion 

Activation Energy of Vacancy Diffusion 
CoefJicient 

Table III shows the activation energy E, 
and the pre-exponential factor 0: for the 
vacancy diffusion coefficient D, . Activa- 
tion energies are plotted in Fig. 8. Figure 8 
clearly indicates that the activation energy 
depends markedly on A13+ content. 

Halloran and Bowen (16) have reported 
that the activation energies Q of D$, are 
-37.2, -21.4, and 0 kcal/mole for y = 0.0, 
0.163, and 0.323, respectively, assuming 
temperature independence of fi . The acti- 
vation energy for the vacancy jump fre- 
quency into iron sites E: , can be calculated 
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0.60 0.62 0 64 

FIG. 7. Arrhenius plots of vacancy diffusion coefficients in (Fe&,A1&04. 0, y  = 0; A, y  = 0.067; 
0, y  = 0.133; 0, y  = 0.2; V, y  = 0 (Nakamura et al. (6)). 

from the above Q values by using the fol- 
lowing equation: 

= Q - Es (36) 

where Es is the enthalpy change due to dis- 
solution of oxygen at constant oxygen pres- 
sures. E(, coincides with E, at y = 0. 

The value of Es, obtained from the non- 
stoichiometric data of Figs. 1-4, is -48 

TABLE III 

ARRHENIUS PARAMETERS FOR VACANCY DIFFUSION 

IN (Fel-,Al)S-s04 

kcal/mole, irrespective of the AP+ ion con- 
tent, whereas the value of Es, derived from 
recent data for nonstoichiometric magnetite 
reported by Dieckmann (20), is -49.4 kcal/ 
mole. Using Es = -48 kcal/mole and Q val- 
ues described above, values of E: were cal- 
culated. The results are also plotted in Fig. 
8. It is seen that EI increases with the in- 
crease in y. The increase of activation en- 
ergy of D, and o1 implies that the vacancy 
jump is retarded by the addition of AP+ 
ions. 

A similar calculation was made on the 
activation energy of D& in magnetite re- 
ported by Dieckmann and Schmalzried 
(15). The result is also plotted in Fig. 8 and 
shows a fair agreement with the present 
result. 

Y In(@) (cm2 set-I) 

0.0 -4.72 t 1.1 
0.0667 -1.09 I?- 1.3 
0.133 3.2 r 1.1 
0.2 7.8 f  1.4 

E, (kcal/mole-‘) 

20.8 f  3.7 
33.5 f  4.2 
50.4 f  3.6 
66.3 +- 4.5 

Dependence of Vacancy Diffusion on 
Hercynite Concentration 

Values of D, in Table II show strong de- 
pendence on the mole fraction y of AP+ 
ions in cations. To show the dependence of 
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60 

Y 

FIG. 8. Activation energy of vacancy diffusion in (Fe,-,Al,)j-804. 0, this work; A, calculated from 
Dieckmann and Schmalzried (15); W, calculated from Halloran and Bowen (16); 0, Nakamura et a[. 
(6). 

D, on y more clearly, D,/D,(O) plotted 
against y is shown in Fig. 9. According to 
Eq. (26), the dependence of D, on y is given 
by 

D,(y)= .wJlfl + x2%h 

D,(O) &LO 

= dl + (4 - Wlfl)Y 

Jilfil 

= [1 + u2!fl)r - l)Yl 

where WY denotes the vacancy jump fre- 
quency in magnetite. Plots in Fig. 8 show 
that D, decreases with increase of y. There- 
fore, wzf2 is smaller than wlfi . This implies 
that D& is smaller than DA m the 
magnetite-hercynite system. 

From Eqs. (28) and (29), the following 
equation is obtained: 

fi=l- 1 -fo 
x1 + xzW!)Y 

(38) 

where y is 02/w1, the ratio of the jump fre- 
quency. An expression for f2 bears similar- 

ity to Eq. (28) and leads to the following 
equation: 

f  
2 

= 1 _ (1 - .fa.Mfdr* 
Xl + X2Wh)Y 

(39) 

0 

-> 

5 

h 

-> 
Q 

0.0 Ir 

00 0.2 0.4 

Y 

FIG. 9. Dependence of D, on y. 0, 1300°C; A, 
1350°C; 0, 1400°C. The broken lines are the ones cal- 
culated by Eq. (41). 
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From Eqs. (38) and (39) an equation forf#, is derived: 

-[cfo - x2)(l - Y) + 11 + Wi - x2)(1 - Y) + II2 + 4x2y 
2X2Y 

(40) 

Insertion of Eq. (39) into Eq. (37) gives 

D,(Y) 

D,(O) 

= [1 + u2mr - lHYmlw& (41) 

Assuming that o1 is constant and equal to 
oy , the right-hand side of Eq. (41) was cal- 
culated for several values of y by using Eq. 
(40) for calculation offi&. The results are 
given by broken lines in Fig. 9. The solid 
lines in Fig. 9 are below the broken lines. 
This fact leads to the conclusion that the 
frequency of vacancy jumps into iron sites 
decreases with the increase in y, This is 
consistent with the conclusion in the pre- 
ceding section verifying that the vacancy 
jump is retarded by addition of AP+ ions. 
However, it is not possible to discuss the 
detailed mechanism of this effect at the 
present time. 

Appendix: Driving Force in the Chemical 
Relaxation in Ternary Metal Oxides 

In the chemical relaxation experiment on 
solid solutions of two oxides (Al-,&.),O, , 
the driving force of diffusion is given by the 
gradient of the chemical potential of oxy- 
gen. However, when oxide ions form a rigid 
sublattice and the chemical relaxation pro- 
cess is described by the diffusion of cations 
within the cation sublattice, the flux of both 
cations is determined by the gradient of the 
electrochemical potential of the cations, as 
given by Eqs. (10) and (11). With the aid of 
thermodynamic relations and some appro- 
priate assumptions, the driving forces are 
expressed in terms of the gradient of the 
chemical potentials of neutral A and B at- 
oms, as shown in Eqs. (19) and (20). 

In the chemical relaxation runs, changes 
in the metal-to-oxygen ratio is small. It is 
assumed that the atomic ratio of A and B 
remains constant. The Gibbs-Duhem equa- 
tion is used for this purpose: 

N,.+dpA + NBdpB + Nodpo = 0, (A-l) 

where NA , Ns , and No are the mole frac- 
tions. Equation (A-l) can be rewritten as 

&A= -$dpB-$$dpo. (-4-2) 

As Eq. (A-2) is perfect differential, the 
following relation holds (21): 

Therefore, 

No 1 =--- 
1 - No NA(~ - No) 

The final factor in Eq. (A-3) is rewritten as 

( aNo ) 

a(NBINJ m = - 

By expressing the mole fraction of B with 
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the variable y, the numerator in Eq. (A-4) is 
converted to 

The denominator in Eq. (A-4) is written as 

Utilizing the above relations, Eq. (A-3) 
yields the following expression for the gra- 
dient of the chemical potential of B: 

No NAN;8 
- + 4(NA + Nd3 1 - No 

( a In P(0,) 
i 

' 
ay 6 

( 
a In P(0,) 

1 1 aln6 y 

No NAP 

NA + NB + NA + NB 

(A-5) 

where cx is defined by 

( a In P(02) 
1 ay 8 

’ 
( 
a lnP(02) 

1 aln8 y 

Similar relation can be derived for the gra- 
dient of the chemical potential of A. 

No 
NA + NB 

N~ff - 

NA + NB 

Equations (A-6) and (A-5) express the driv- 
ing force on A and B ions, in a chemical 
relaxation experiment on ternary oxides. 
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